Specification **Technical**

NO-B4 Nitric Oxide Sensor

> 24

< 13

Figure 1 NO-B4 Schematic Diagram **PATENTED** -Worker Ø32.3 including label Counter Reference NITRIC OXIDE NO-B4 12345678 Sensing area Do not obscure -Auxiliary Electrode All dimensions in millimetres (± 0.1mm) **Bottom View Side View Top View**

PERFORMANCE

	Sensitivity	nA/ppm in 50ppm NO	200 to 300
	Response time	t ₉₀ (s) from zero to 50ppm NO	< 25
	Zero current	ppm equivalent in zero air	±1.5
	Resolution	RMS noise (ppm equivalent)	< 0.1
	Range	ppm NO limit of performance warranty	100
	Linearity	ppm error at full scale, linear at zero and 50ppm NO	1 to 2
	Overgas limit	maximum ppm for stable response to gas pulse	1200
LIFETIME	Zero drift	ppm equivalent change/year in lab air	<0.3
	Sensitivitydrift	% change/year in lab air, monthly test	<5

ENVIRONMENTAL

Operating life

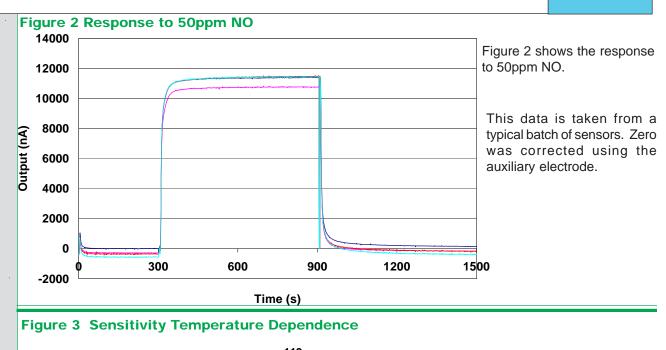
Sensitivity @ -20°C	% (output @ -20°C/output @ 20°C) @ 50ppm NO	87 to 95
Sensitivity @ 50°C	% (output @ 50°C/output @ 20°C) @ 50ppm NO	102 to 107
Zero @ -20°C	ppm equivalent change from 20°C	0 to -0.4
Zero @ 50°C	ppm equivalent change from 20°C	6 to 10

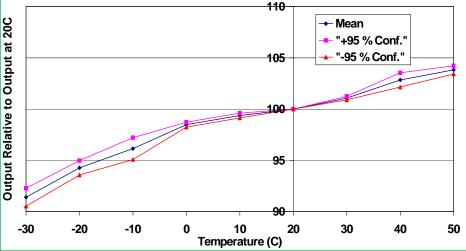
months until 80% original signal (24 month warranted)

CROSS SENSITIVITY

H ₂ S	sensitivity	% measured gas	@ 20ppm	H ₂ S	< 60
NŌ,	sensitivity	% measured gas	@ 10ppm	NO ₂ (after 3 minutes)	< 1.5
CI,	sensitivity	% measured gas	@ 10ppm	Cl ₂	< 5
SO,	sensitivity	% measured gas	@ 20ppm	SŌ,	< 3
H,	sensitivity	% measured gas	@ 400ppm	H ₂	< 0.1
CÕ	sensitivity	% measured gas	@ 400ppm	CŌ	< 0.3
CO ₂	sensitivity	% measured gas	@ 5% Vol	CO ₂	< 0.1
Halothane	sensitivity		@ 100ppm	Halothane	< 0.1

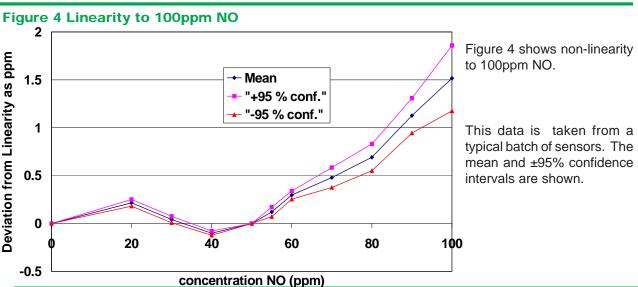
KEY SPECIFICATIONS


Weight


Bias voltage	mV (working electrode potential is above reference electrode)	+300
Temperature range	°C	-30 to 50
Pressure range	kPa	80 to 120
Humidity range	% rh continuous	15 to 90
Storage period	months @ 3 to 20°C (stored in sealed pot)	6
Load resistor	Ω (recommended)	10 to 47

NOTE: all sensors are tested at ambient environmental conditions, with 10 ohm load resistor, unless otherwise stated. As applications of use are outside our control, the information provided is given without legal responsibility. Customers should test under their own conditions, to ensure that the sensors are suitable for their own

NO-B4 Performance Data



pecification

echnica

Figure 3 shows the variation in sensitivity caused by changes in temperature expressed as ppm gas equivalent.

This data is taken from a typical batch of sensors.

