MH-710A 智能红外气体传感器

使用说明书

目 录

1	概述	1
2 !	特点及主要技术参数	1
	1 特点 2 主要技术参数	
3	结构尺寸	2
4	引线定义	2
	IC 通讯协议	
	1写操作	
	2 读操作	
5.	3 校验值计算	2
6	IIC 协议命令	3
6.	1 块版本号和模块名称,命令: 0x90	3
6.	2 模块名称 2, 命令: 0x91	3
6.	3 模块生产日期,命令: 0x92	3
6.	4 模块校准日期,命令: 0x93	4
6.	5 模块序列号,命令: 0x94	4
6.	6 读模块报警值,命令: 0x95	4
6.	7 模块状态,命令: 0x96	5
6.	8 置低限报警值,命令: 0x97	5
6.	9 置高限报警值,命令: 0x98	5
6.	10 置 STEL 报警值,命令: 0x99	6
6.	11 置 TWA 报警值,命令: 0x9a	6
6.	12 0 点标定,命令: 0xa0	6
6.	13 SPAN 点标定,命令: Oxaa	6

1 概述

MH-710A传感器是一个通用型、小型传感器,利用非色散红外(NDIR)原理对空气中存在的 CO_2 进行探测,具有很好的选择性,无氧气依赖性,性能稳定、寿命长。MH-710A是将成熟的红外吸收气体检测技术与微型机械加工、精良电路设计紧密结合,制作出的小巧型红外气体传感器。

可广泛应用于工业、农业、运输等存在 CO2 的各个领域。

2 特点及主要技术参数

2.1 特点

高灵敏度 5V定电压、低功耗 快速响应恢复特性 温度补偿 优异的稳定性 长期的使用寿命 不中毒 抗水汽干扰

2.2 主要技术参数

型号	MH-4A	单位	备注
检测范围	0-50000	ppm	0~100%vol 范围内可定制
分辨率	10	ppm	
响应时间(T ₉₀)	<30	S	
零点漂移	<±300	ppm/月	
工作电压	4.5~5.5	V	
工作电流	<100	mA	
工作范围	-40~+70	$^{\circ}\mathbb{C}$	
贮存温度	-40∼+85	${\mathbb C}$	
湿度范围	<95	%RH	
压力范围	90~110	KPa	
预期使用寿命	>5	年	

3 结构尺寸

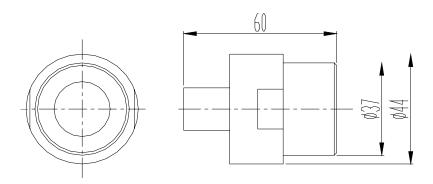


图 1: 传感结构尺寸

4 引线定义

红线: VCC 黄线: SCL 棕线: SDA 黑线: GND

5 IIC 通讯协议

本模块是通过IIC总线进行通讯的,模块工作于IIC的从机模式,可以与外部的MCU相联,模块器件地址是: 0xAA,模块的写操作地址是: 0xAA,读操作地址是: 0xAB。IIC通讯时每一帧数数据包含10个字节数据,数据的内容根据主机的命令不同而不同,数据的最后一个字节为校验值。推荐SCL的时钟频率小于10K。

5. 1 写操作

每个写操作发送的第一个字节为命令字节,一个完整的写操作时序为:

发送 START 信号 → 发送模块地址(写) → 接收应答位 → 发送 DATA0(命令) → 接收应答位 → 发送 DATA1 → 接收应答位 → …… → 发送 DATA9(校验值) → 接收应答位 → 发送 STOP 信号

5. 2 读操作

一个完整的读操作时序为:

发送 START 信号 \rightarrow 发送模块地址(读) \rightarrow 接收应答位 \rightarrow 接收 DATA0 \rightarrow 发送应答位 \rightarrow 接收 DATA1 \rightarrow 发送应答位 \rightarrow …… \rightarrow 接收 DATA9 (校验值) \rightarrow 发送非应答位 \rightarrow 发送 STOP 信号

5. 3 校验值计算

校验值 = (取反(DATA0+DATA1+······+DATA8))+1

6 IIC 协议命令

执行读操作时,如读模块生产日期,必须先执行一次写操作,将读模块生产日期命令(0x92)写入模块,然后执行读操作,才能读出块生产日期。

执行写操作时,如设置模块高限报警值,将设置高限报警值命令(0x98)和高限报警值一同写入模块。

所有整型数据都是高位在前,低位在后。如 DATA1 ~ DATA2 = 高限报警浓度值,则表示 DATA1 = 高限报警浓度值高 8 位, DATA2 = 高限报警浓度值低 8 位。具体操作如下:

6. 1 块版本号和模块名称,命令: 0x90

发送 START 信号 \rightarrow 发送模块地址(写) \rightarrow 接收应答位 \rightarrow 发送 DATA0(命令) \rightarrow 接收应答位 \rightarrow 发送 DATA1 \rightarrow 接收应答位 \rightarrow …… \rightarrow 发送 DATA9(校验值) \rightarrow 接收应答位 \rightarrow 发送 STOP 信号

DATA0 = 0x90;

DATA1~DATA8 为任意值;

DATA9 = 校验值(以下相同)。

发送 START 信号 \rightarrow 发送模块地址(读) \rightarrow 接收应答位 \rightarrow 接收 DATA0 \rightarrow 发送应答位 \rightarrow 接收 DATA1 \rightarrow 发送应答位 \rightarrow …… \rightarrow 接收 DATA9 (校验值) \rightarrow 发送非应答位 \rightarrow 发送 STOP 信号

DATA0 = 版本号; DATA1 = ID 号;

DATA2 = 字ID 号:

DATA3~DATA8= 传感器名称。

DATA9 = 校验值(以下相同)。

6. 2 模块名称 2, 命令: 0x91

发送 START 信号 \rightarrow 发送模块地址(写) \rightarrow 接收应答位 \rightarrow 发送 DATA0(命令) \rightarrow 接收应答位 \rightarrow 发送 DATA1 \rightarrow 接收应答位 \rightarrow " 大送 DATA9(校验值) \rightarrow 接收应答位 \rightarrow 发送 STOP 信号

DATA0 = 0x91;

DATA1~DATA8 为任意值。

发送 START 信号 → 发送模块地址(读) → 接收应答位 → 接收 DATA0 → 发送应答位 → 接收 DATA1 → 发送应答位 → …… → 接收 DATA9 (校验值) → 发送非应答位 → 发送 STOP 信号 DATA0 ~ DATA8 = 传感器名称 2。

6. 3 模块生产日期, 命令: 0x92

发送 START 信号 \rightarrow 发送模块地址(写) \rightarrow 接收应答位 \rightarrow 发送 DATA0(命令) \rightarrow 接收应答位 \rightarrow 发送 DATA1 \rightarrow 接收应答位 \rightarrow " 大送 DATA9(校验值) \rightarrow 接收应答位 \rightarrow 发送 STOP 信号

DATA0 = 0x92;

DATA1~DATA8 为任意值。

发送 START 信号 \rightarrow 发送模块地址(读) \rightarrow 接收应答位 \rightarrow 接收 DATA0 \rightarrow 发送应答位 \rightarrow 接收 DATA1 \rightarrow 发送应答位 \rightarrow …… \rightarrow 接收 DATA9 (校验值) \rightarrow 发送非应答位 \rightarrow 发送 STOP 信号

DATA0~DATA6= 生产日期;

DATA7~DATA8=有效期。

6. 4 模块校准日期, 命令: 0x93

发送 START 信号 \rightarrow 发送模块地址(写) \rightarrow 接收应答位 \rightarrow 发送 DATA0(命令) \rightarrow 接收应答位 \rightarrow 发送 DATA1 \rightarrow 接收应答位 \rightarrow " 发送 DATA9(校验值) \rightarrow 接收应答位 \rightarrow 发送 STOP 信号

DATA0 = 0x93;

DATA1~DATA8 为任意值。

发送 START 信号 \rightarrow 发送模块地址(读) \rightarrow 接收应答位 \rightarrow 接收 DATA0 \rightarrow 发送应答位 \rightarrow 接收 DATA1 \rightarrow 发送应答位 \rightarrow …… \rightarrow 接收 DATA9 (校验值) \rightarrow 发送非应答位 \rightarrow 发送 STOP 信号

DATA0~DATA6=校准日期;

DATA7~DATA8=有效期。

6.5 模块序列号, 命令: 0x94

发送 START 信号 \rightarrow 发送模块地址(写) \rightarrow 接收应答位 \rightarrow 发送 DATA0(命令) \rightarrow 接收应答位 \rightarrow 发送 DATA1 \rightarrow 接收应答位 \rightarrow " 大送 DATA9(校验值) \rightarrow 接收应答位 \rightarrow 发送 STOP 信号

DATA0 = 0x94;

DATA1~DATA8 为任意值。

发送 START 信号 → 发送模块地址(读) → 接收应答位 → 接收 DATA0 → 发送应答位 → 接收 DATA1 → 发送应答位 → …… → 接收 DATA9 (校验值) → 发送非应答位 → 发送 STOP 信号 DATA0 ~ DATA8 = 序列号。

6. 6 读模块报警值, 命令: 0x95

发送 START 信号 \rightarrow 发送模块地址(写) \rightarrow 接收应答位 \rightarrow 发送 DATA0(命令) \rightarrow 接收应答位 \rightarrow 发送 DATA1 \rightarrow 接收应答位 \rightarrow " 发送 DATA9(校验值) \rightarrow 接收应答位 \rightarrow 发送 STOP 信号

DATA0 = 0x95;

DATA1~DATA8 为任意值。

发送 START 信号 \rightarrow 发送模块地址(读) \rightarrow 接收应答位 \rightarrow 接收 DATA0 \rightarrow 发送应答位 \rightarrow 接收 DATA1 \rightarrow 发送应答位 \rightarrow …… \rightarrow 接收 DATA9 (校验值) \rightarrow 发送非应答位 \rightarrow 发送 STOP 信号

DATA0~DATA1=低限报警值;

DATA2~DATA3= 高限报警值:

DATA4 ~ DATA5 = STEL 报警值;

DATA6~DATA7=TWA 报警值;

DATA8 = 0.

6. 7 模块状态,命令: 0x96

发送 START 信号 \rightarrow 发送模块地址(写) \rightarrow 接收应答位 \rightarrow 发送 DATA0(命令) \rightarrow 接收应答位 \rightarrow 发送 DATA1 \rightarrow 接收应答位 \rightarrow " 发送 DATA9(校验值) \rightarrow 接收应答位 \rightarrow 发送 STOP 信号

DATA0 = 0x96;

DATA1~DATA4= 当前时间"年月日时"

DATA5~DATA8 为任意值。

发送 START 信号 \rightarrow 发送模块地址(读) \rightarrow 接收应答位 \rightarrow 接收 DATA0 \rightarrow 发送应答位 \rightarrow 接收 DATA1 \rightarrow 发送应答位 \rightarrow …… \rightarrow 接收 DATA9 (校验值) \rightarrow 发送非应答位 \rightarrow 发送 STOP 信号

DATA0 = 模块状态;

DATA2 = 单位:

DATA3 = 气体种类;

DATA4 = 温度;

DATA5~DATA6=气体浓度值;

DATA7~DATA8=量程。

注:模块状态字节(DATA0)最高位,即 DATA0.7表标示数据是否带小数位。如果 DATA0.7 = 1表示数据带一位小数,否则数据不带小数。这和原 TC200协议相同。

6.8 置低限报警值,命令:0x97

发送 START 信号 \rightarrow 发送模块地址(写) \rightarrow 接收应答位 \rightarrow 发送 DATA0(命令) \rightarrow 接收应答位 \rightarrow 发送 DATA1 \rightarrow 接收应答位 \rightarrow " 发送 DATA9(校验值) \rightarrow 接收应答位 \rightarrow 发送 STOP 信号

DATA0 = 0x97;

DATA1~DATA2=低限报警值;

DATA3~DATA8 为任意值。

6. 9 置高限报警值,命令: 0x98

发送 START 信号 \rightarrow 发送模块地址(写) \rightarrow 接收应答位 \rightarrow 发送 DATA0(命令) \rightarrow 接收应答位 \rightarrow 发送 DATA1 \rightarrow 接收应答位 \rightarrow " 大送 DATA9(校验值) \rightarrow 接收应答位 \rightarrow 发送 STOP 信号

DATA0 = 0x98;

DATA1~DATA2= 高限报警值;

DATA3~DATA8 为任意值。

6. 10 置 STEL 报警值, 命令: 0x99

发送 START 信号 \rightarrow 发送模块地址(写) \rightarrow 接收应答位 \rightarrow 发送 DATA0(命令) \rightarrow 接收应答位 \rightarrow 发送 DATA1 \rightarrow 接收应答位 \rightarrow " 发送 DATA9(校验值) \rightarrow 接收应答位 \rightarrow 发送 STOP 信号

DATA0 = 0x99;

DATA1 ~ DATA2 = STEL 报警值;

DATA3~DATA8 为任意值。

6. 11 置 TWA 报警值,命令: 0x9a

发送 START 信号 → 发送模块地址(写) → 接收应答位 → 发送 DATA0(命令) → 接收应答位 → 发送 DATA1 → 接收应答位 → …… → 发送 DATA9(校验值) → 接收应答位 → 发送 STOP 信号

DATA0 = 0x99;

DATA1 ~ DATA2 = TWA 报警值;

DATA3~DATA8 为任意值。

6. 12 0 点标定, 命令: 0xa0

发送 START 信号 \rightarrow 发送模块地址(写) \rightarrow 接收应答位 \rightarrow 发送 DATA0(命令) \rightarrow 接收应答位 \rightarrow 发送 DATA1 \rightarrow 接收应答位 \rightarrow …… \rightarrow 发送 DATA9(校验值) \rightarrow 接收应答位 \rightarrow 发送 STOP 信号

DATA0 = 0xa0;

DATA1~DATA8 为任意值。

6. 13 SPAN 点标定, 命令: 0xaa

发送 START 信号 \rightarrow 发送模块地址(写) \rightarrow 接收应答位 \rightarrow 发送 DATA0(命令) \rightarrow 接收应答位 \rightarrow 发送 DATA1 \rightarrow 接收应答位 \rightarrow " 发送 DATA9(校验值) \rightarrow 接收应答位 \rightarrow 发送 STOP 信号

DATA0 = 0xaa;

Data1~Data2:单点标定浓度值。

DATA3~DATA8 为任意值。