

Nitrogen Oxide Sensor

AS-MLN

Whether for air quality, safety or control, sensor applications have one common requirement: a reliable sensor component. AppliedSensor's ability to micro-machine sensor chips using standard silicon wafer technology allows to produce consistently reliable sensors in high volumes for mass market applications.

Unique micro machined, low power sensor design

AppliedSensor's high-performance ML sensor components offer reduced power consumption and increased packaging flexibility. The sensors are produced by combining the benefits of thick film, thin film and patents pending technologies on silicon substrate. Heater and interdigital electrode structures are positioned on a 1 µm-thin membrane on top of which is deposited a tin dioxide sensitive layer that creates gas concentration-dependent conductivity.

The sensor component has high sensitivity and selectivity to nitrogen oxide and is packaged in a standard TO-39 (solid TO-5), 4-pin header. For further cost efficiency, the low heat-generating micro-machined chip may be adhered directly to a printed circuit board (Chip on Board packaging).

In addition to sensor design, AppliedSensor offers complete NO_x application development including full electronics integration.

Key Benefits

- High sensitivity to NO₂ (0.1 to 2 ppm)
- Very low power consumption
- Long lifetime
- Low cross sensitivity
- Long term stability

Typical Applications

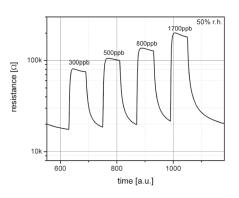
Nitrogen dioxide monitoring and leakage detection

Features

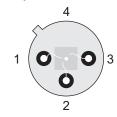
Chip size	2x2 mm
cluding header	Ø: 10 mm, height: 11 mm
perational Conditions	, ,
eration temperature range	250°C - 350°C
pical operation temperature	270°C
vironmental Conditions	
bient temperature range	-40°C - 120°C (lower than op. temp.)
pient humidity	0 - 95% RH
ectrical Characteristics	
wer consumption	35 mW at 270°C
pical sensor resistance during	
eration in air (50% RH)	10 k Ω range
vical sensor resistance during	
eration in 0,5% CH4 (50% RH)	100 k Ω range
nal output component	Resistance
ater	
ical heater voltage	~2.3 V for 270°C
nperature coefficient	TC≈1700 ppm/K
ical heater resistance at RT	95 Ω
nsing Properties	
ncentration range	Can withstand >10 ppm NO_2 in air
nsitivity range	0.1 to 2ppm
pical response / recovery time	Seconds
pected lifetime	Years
Cross sensitivity	Limited cross sensitivity to humidity,
	hydrogen and hydrocarbons
ckaging Options	
ndard TO-39 (solid TO-5) packag	e with protection membrane.
e-mould packages.	

Pre-mould packages. Chip on board solutions.

Restrictions


Contact of the sensitive layer with liquids shall be avoided.

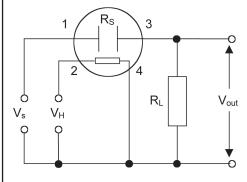
Do not operate gas sensors in the vicinity of silicone and polysiloxanes.


AppliedSensor is not responsible for the design, implementation, manufacture or results from use of products that incorporate AppliedSensor components unless expressly agreed to in writing. Prior to using or distributing any product that incorporates AppliedSensor components, users and distributors should assure adequate design, testing and operating safeguards, and consult with AppliedSensor's technical staff, as necessary. All AppliedSensor components and services are sold subject to AppliedSensor's terms and conditions of sale. For the most current AppliedSensor product information and terms and conditions of sale visit us at www.appliedsensor.com.AppliedSensor and the AppliedSensor logo are trademarks of AppliedSensor Sweden AB, AppliedSensor GmbH and AppliedSensor, Inc. Copyright © 2009 AppliedSensor Sweden AB. 08.09

AppliedSensor Sweden AB Diskettgatan 11 SE-583 35 Linköping, Sweden Tel: +46 13 GRS PAR自动化 http: Fax: +46 13 262 929 AppliedSensor GmbH Gerhard-Kindler-Str. 8 72770 Reutlingen, Germany WW: 569 5671-51486-29 Fax: +49-7121-51486-29 AppliedSensor, Inc. 53 Mountain Boulevard Warren, NJ 07059, USA 755483376989374A770755-83376182 E-MAIL: szss200163.com Fax: +1 1908/222-1478

Typical Sensor Response

Pin Layout



Top view AS-MLN Sensor Component

Pin Function

- 1 Sensor electrode 1
- 2 Heater power
- 3 Sensor electrode 2
- 4 Heater ground

Basic Measuring Circuit (Exemplified and Simplified)

